A bijection for essentially 4-connected toroidal triangulations

نویسندگان

  • Nicolas Bonichon
  • Benjamin Lévêque
چکیده

Transversal structures (also known as regular edge labelings) are combinatorial structures defined over 4-connected plane triangulations with quadrangular outer-face. They have been intensively studied and used for many applications (drawing algorithm, random generation, enumeration. . . ). In this paper we introduce and study a generalization of these objects for the toroidal case. Contrary to what happens in the plane, the set of toroidal transversal structures of a given toroidal triangulation is partitioned into several distributive lattices. We exhibit a subset of toroidal transversal structures, called balanced, and show that it forms a single distributive lattice. Then, using the minimal element of the lattice, we are able to enumerate bijectively essentially 4-connected toroidal triangulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encoding toroidal triangulations

Poulalhon and Schaeffer introduced an elegant method to linearly encode a planar triangulation optimally. The method is based on performing a special depth-first search algorithm on a particular orientation of the triangulation: the minimal Schnyder wood. Recent progress toward generalizing Schnyder woods to higher genus enables us to generalize this method to the toroidal case. In the plane, t...

متن کامل

Transversal Structures on Triangulations, with Application to Straight-Line Drawing

We define and investigate so-called transversal structures related to triangulations without separating triangles, which are equivalent to the regular edge labelings discovered by Kant and He. We study other properties of transversal structures and show that they give rise to a new straight-line drawing algorithm for triangulations without separating triangles, and more generally for 4-connecte...

متن کامل

New bijective links on planar maps

This article describes new bijective links on planar maps, which are of incremental complexity and present original features. The first two bijections Φ1,2 are correspondences on oriented planar maps. They can be considered as variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate only on the embeddings in a simple local way. In...

متن کامل

New bijective links on planar maps via orientations

This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific “transversal structures” on triangulations of the 4-gon with no separating 3-cycle, which are called irreducible triangulations. This bijection specializes to a bijection between rooted non-separable maps and rooted irreducible triangulations. This yi...

متن کامل

A bijection between 2-triangulations and pairs of non-crossing Dyck paths

A k-triangulation of a convex polygon is a maximal set of diagonals so that no k + 1 of them mutually cross in their interiors. We present a bijection between 2-triangulations of a convex n-gon and pairs of non-crossing Dyck paths of length 2(n−4). This gives a bijective proof of a recent result of Jonsson for the case k = 2. We obtain the bijection by constructing isomorphic generating trees f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.08191  شماره 

صفحات  -

تاریخ انتشار 2017